
A Tool for Maintaining Multi-variant Hypertext

Documents?

Shueh-Cheng Hu and Richard Furuta
fshuehu,furutag@csdl.tamu.edu

Telephone: +1-409-845-3839 FAX: +1-409-847-8578

Center for the Study of Digital Libraries and Department of Computer Science
Texas A&M University

College Station, TX 77843{3112, USA

Abstract. With the increasing internationalization of the World-Wide
Web comes a corresponding increase in the need for multi-variant hyper-
text documents|families of documents with instances that are designed
based on the same theme and structure but in which the content varies,
being expressed in di�erent languages to thereby be accessible in the
reader's native languages. The di�erent variants in the document fam-
ily ideally share the same hypertext structure, called a consistent state,
but require exceptions to handle variant-unique contents. As a practical
matter, di�ering maintainer expertise in the supported languages often
means that each variant is maintained separately from the others. In this
case over time the hypertext structures of the di�erent variants gradually
deviate from each other, resulting in inconsistencies. We have developed
a tool to aid authors in maintaining consistency within multi-variant
hypertext documents. Our tool can traverse and compare multiple vari-
ants of a hypertext document simultaneously, report inconsistencies, and
keep track of all updates that may cause new inconsistencies after consis-
tent status has already been reached. We describe our experiences with
the tool on a two-language Web site that we are maintaining. Our tool
discovered previously unrecognized inconsistencies that had been in our
Web pages for some time. Although it still can be enhanced further in
many ways, with aid of the tool, a signi�cant amount of time can be
saved on maintaining consistency in multi-variant hypertext documents.

Keywords: Hypertext, multi-variant documents, maintenance, spider,
World-Wide Web.

1 Introduction

Together with Professor Eduardo Urbina of Texas A&M University's Depart-
ment of Modern and Classical Languages, the authors have been working since
1995 to establish a digital library based on the works of Miguel de Cervantes

?This material is based in part on work supported by the Texas Advanced Research
Program under Grant Number 99903-230.

Saavedra (1547{1616), the well-known author of Don Quijote de la Mancha. The
project, called Cervantes Project 2001 [1], includes bibliographic records, source
texts, and photographic images about Cervantes, one of the most-in
uential
authors in Hispanic culture and literature. Consequently, one project require-
ment is that our Web pages be accessible both by English-speakers and also by
Spanish-speakers. The two sets of Web pages are based on the same themes, and
consequently mirror each other's hypertext structure and presentation format.
At times the two structures merge, for example when referencing the electronic
source texts in the original Spanish. Other times, there may be variant-speci�c
di�erences, for example a survey directed to Spanish-speaking users of the site.
We have found it is di�cult to manually keep the di�erent variants of our hy-
pertext document consistent in terms of structure and format, especially in this
frequently changing environment. There are tools [2,8,9,10] available to handle
maintenance of hypertext documents, but none address the issues of maintaining
consistency among multiple variants. Lack of e�ective tools thus motivates our
work: design and implementation of a tool that can aid people in maintaining a
multi-variant hypertext document consistently.

2 Problem of Maintaining Consistency

2.1 Problem Background and In
uences

Updating contents and structure of hypertext documents is inevitable to keep
a Web page in a fresh status. However, this kind of task is time-consuming
and tedious, especially in maintaining an expanding Web site like that of the
Cervantes 2001 project. The project collects information about Cervantes from
international correspondents continuously. After editorial review, editing, and
input (typing or OCR), new contents are added into the project's site. From
time to time, the structure of the site is updated as the project develops. Main-
taining consistency within the site is di�cult; the situation is exaggerated since
multiple variants of the same project contents must be maintained consistently.
The di�erent language variants of the Cervantes 2001 site are often maintained
by di�erent people, or by the same person at di�erent times. Updates are made
manually in individual variants, sometimes by more than one person. During
periods of rapid change, the maintainer of, for example, the Spanish-language
variant can forget to notify the maintainer of the English-language variant when
changes occur. Even when only one person handles both variants, it is easy to
forget to mirror updates in both contexts. Updates, therefore, bring previously
consistent variants into a inconsistent status. Inconsistencies, and their resulting
e�ect on information interpretation, may give rise to inconvenience, misunder-
standing, or mistakes among members of a community (e.g., Cervantes scholars
in our case), especially since the Web is becoming more and more a commonplace
source for information.

will cause inconsistency
Node_A

Contents of

Node_X in

Node_E,

Variant_2
Variant_2

unique in var_2.

 A

XX

Variant_1

Contents of

Node_X in

Variant_1

Fig. 1: Model of Multi-variant Hypertext Document

2.2 Model and Terminology

To describe related concepts and the tool clearly, it is necessary to de�ne some
terms used in this paper. Before introducing the model, we want to clarify
the term \variant" and contrast it to the related term \version", which usu-
ally means \a copy of something that is slightly di�erent from the thing being
copied" in much of the literature related to software and document maintenance
[8,9,10,11,12]. In this paper, we de�ne variant more speci�cally as \a descrip-
tion of one thing described by di�erent language." Figure 1 diagrams a simple
multi-variant hypertext document, which will be used as example in this sec-
tion. As �gure 1 shows, each variant has one corresponding network of nodes
and links. Each node in a network represents one document; each link represents
a reference from one document to another document. Since they are based on
the identical theme, di�erent variants are expected to have identical hypertext
structures, with only few exceptions, if any (Node E of variant 2 in �gure 1 shows
one exception). In other words, networks representing di�erent variants will be
the same, except for the relatively-rare case of variant-unique nodes and corre-
sponding links. So with the exception of Node E in our example, if a Node X
exists in variant 1, then a counterpart Node X and corresponding links also are
found in variant 2. The contents of the two Node Xs and their formats will be
similar to each other except the languages used. Such two nodes in di�erent
networks are called related nodes in this paper. The tool recognizes two kinds of
inconsistencies between variants: structural inconsistencies and non-structural
inconsistencies.

As will be discussed, structural inconsistencies, can be further divided into
two types. Adding/removing nodes and changing linked nodes will result in in-
consistencies of the �rst type, which are called type 1 inconsistencies. Figure 1
shows if Node A and corresponding links are added into variant 2 without similar
action taken in variant 1, then a type 1 structural inconsistency will be created.
Reordering the links in a document creates an inconsistency of the second type,

called a type 2 structural inconsistency; in other words type 2 structural incon-
sistencies re
ect di�erences in the internal structures of related nodes. This type
of inconsistency is illustrated in �gure 2: Node A1 in variant 1 has three links
that point to nodes B1, C1, and D1 in sequence, while its counterpart in vari-
ant 2, A2, has links that point to the related nodes in the sequence D2, C2, and
B2. This type of inconsistency leads to di�erent traversing orders in di�erent
variants.

G2 H2

A2

C2

D2 B2

E2I2 J2 F2

BSF queue (head <-> tail)

order of being visited ->

A B C D E F G H I J

A D C B H I J G E F

Var_1

Var_2

A1

B1
C1 D1

E1 F1 G1 H1 I1 J1

Fig. 2: Type 2 Structural Inconsistency

The second kind of inconsistency is called non-structural inconsistency; in
other words content or formatting di�erences between corresponding nodes. For
example, two variant hypertext documents based on the same theme presenting
the analogous set of objects (excluding links) results in this kind of inconsis-
tency if they use di�erent HTML formatting tags, say table and list in present-
ing analogous items. To �nd the structural inconsistencies, the tool analyzes
network structures of corresponding variants to look for inconsistencies between
variants. Non-structural inconsistencies are harder to �nd because of the inher-
ent di�erences caused by expression in di�erent languages. This tool assumes
sets of compared documents are aligned correctly (related), so contextual di�er-
ence between variants will not be detected. However, part of any non-structural
inconsistencies can be found by comparing the HTML formatting tags of the
contents of related nodes in di�erent variants.

3 Maintenance Tool Requirements

The goal of this work is to develop a tool that can help users to maintain consis-
tent multi-variant hypertext documents. Figure 3 gives an overview of the tool's
role in this maintenance task. The major requirements for the tool include: �rst,

Var_N

Var_2 author(s)

Var_1 Traversal log

update triggered

Traversal

Comparison

comparison criteria

Authoring

summary report
of comparison result

New report of

re-comparison result

Authoring

yes

judged by

co
ns

is
te

nt
 s

ta
te

OK
yes

OK

NO

no

Tracking
Abort if inconsistency found!

different variants of one hypertext document

Re-comparison

Fig. 3: Overview of the maintenance tool and its working
ow

allowing the user to adjust the criteria of comparison
exibly; second, travers-
ing networks represented by variants to �nd di�erences between variants; third,
tracking all changes that were made since previous consistent status was reached
to detect new inconsistencies. Each requirement will be analyzed in detail later.

3.1 Traversing Multiple Networks Automatically

To �nd structural inconsistencies between variants, we need to compare the
hypertext structure of corresponding networks, one set of related nodes by one
set of related nodes. If any inconsistency is found during traversal, the tool
must report it so that the user can resolve it. After traversal, the tool should
generate a log that records important information such as the entire traversal
procedure and all visited sets of related nodes (documents). Regarding non-
structural inconsistencies, traversal also is required. When one set of related
nodes is visited, besides checking their structures, the tool must compare their
contents and formats (e.g., the node's internal structure) to see if any di�erence
exists except for language.

3.2 Adjusting Comparison Criteria Flexibly

Not every HTML tag [7] has a signi�cant e�ects on a Web hypertext document,
either visually or structurally. For example, <P> and
 both have no e�ect
on the network structure of the document they reside in, and using either will
produce the same look in browsers under many circumstances. Getting rid of
those non-critical but frequently used tags can help speed up comparison be-
tween nodes in di�erent variants. Thus,
exibility in choosing tags of interest,
i.e., adjusting the scope of comparison according to the user's requirements, is
important in this tool. The user can adjust the scope of comparison by adding/
removing HTML tags into/from a set of tags that will be taken into account

during the comparison process; all tags that do not belong to this set will be
ignored. Adjusting the scope of comparison indirectly changes the degree of
tightness used to evaluate inconsistency among documents in di�erent variants;
reducing the scope of comparison means loosing the evaluation criteria. Though
based on the same theme, di�erent variants still may have unique contents to
be presented; things special in one variant may have no counterparts in other
variants. Thus, we need the
exibility to accommodate variant-speci�c contents
and make variant-unique contents transparent to comparison mechanism. In this
tool, a pair of special HTML comment tags are used to identify variant-speci�c
contents: <!-- VER ONLY BEGIN --> and <!-- VER ONLY END -->. The traver-
sal mechanism in this tool can recognize this pair of tags in hypertext documents
and �lter out the enclosed variant-speci�c contents.

3.3 Keeping Consistent Status Unchanged

After reaching a consistent status, any modi�cations to maintained hypertext
documents need to be tracked to make sure no new inconsistencies result from
those modi�cations. The tool must be able to detect all modi�cations made since
the previous consistent status was reached, then determine which documents
are in
uenced by those modi�cations, and �nally re-compares those in
uenced
documents to see if consistent status is changed by those modi�cations. If any
modi�cation results in new inconsistencies, the tool should alert the user about
the appearance and origin of the new inconsistencies, thereby prompting the
user to initiate the authoring steps needed to restore consistent status.

4 How the Maintenance Tool Works

Earlier, we discussed the three major mechanisms in the tool for traversal, com-
parison, and tracking, respectively. Besides these mechanisms, some other aux-
iliary �les are necessary to ful�ll the ultimate goal of this tool. Figure 3 presents
an overview of the maintenance tool's architecture. In this section, we will de-
scribe the implementation of each of these mechanisms in more detail, explaining
one mechanism and related auxiliary �les in each of the following subsections.

4.1 Traversing Multiple Networks of Linked Nodes

One of the most important mechanisms in this tool is responsible for automat-
ically traversing networks representing di�erent variants. The traversal mecha-
nism behaves like Web spiders, sometimes called Web Robots, which are widely
used in applications like information collection for search engines [3,4,5], and
for mirroring Web sites [6]. Unlike these applications, our traversal mechanism
must traverse multiple related networks to collect the information on which the
later comparison is based. When information is read from a node, our traversal
mechanism �rst �lters it to reduce it to a set of e�ective HTML tags. The �l-
tering process obtains a whole document, then removes non-tag contents �rst,

since those contents are meaningless for comparison. Next, it removes tags that
either belong to the set of ignored tags or are variant-unique. After remov-
ing these contents, the �lter passes the remaining e�ective HTML tags to the
traversal and the comparison mechanisms, which then perform structural and
non-structural inconsistency detection based on e�ective HTML anchors and
other tags. The traversal mechanism follows a breadth-�rst-search algorithm to
traverse networks, set of related nodes by set of related nodes. Consequently, the
traversal mechanism visits each set of related nodes at the same time and leaves
for the next set of related nodes simultaneously. During the traversal process, it
detects structural inconsistencies by comparing the numbers of out-bound links
from currently visited related nodes. Except for variant-unique contents, each
node in one set of related nodes should have the same number of out-bound an-
chors. So, any di�erence among numbers of out-bound anchors of related nodes
will reasonably be viewed as existence of structural inconsistency. As we can
detect existence of type 1 structural inconsistency if there are di�erent numbers
of out-bound links of related nodes, type 2 structural inconsistency also can be
detected using the same criterion but with a slight chance of failing to detect the
inconsistency. An ad-hoc proof is given in the Appendix A to explain how the
type 2 structural inconsistency will be detected with the same criterion and why
there is a slight chance of failing to detect the type 2 structural inconsistency.

If any structural inconsistencies are found during traversal process, the traver-
sal mechanism will display error messages and stop traversal immediately. This
restrictive traversal-stop rule prevents the traversal mechanism from getting into
a confusing situation later, in which the traversal mechanism will face unrelated
nodes in di�erent variants, while the mechanism will treat them as related nodes
and will compare them.

Since there may be circles of links, the traversal mechanism may face redun-
dant sets of related nodes. To avoid wasting time on redundant comparison and
producing redundant traversal log records and comparison results, all visited
sets of related nodes are added into a history list, thus subsequent sets of related
nodes can be passed over if they have already been compared.

During the process of traversal, the traversal mechanism generates a traversal
log �le that records each set of related nodes and their comparison result, in the
order of being visited. This traversal log will be used by the tracking mechanism,
which is responsible for keeping consistent state unchanged and will be discussed
later. The format of each log record is as follows:

�lename URL 1 ... URL N

�le stores URL of the ... URL of the
comparison result 1st variant's node ... N th variant's node

The �rst item is summary report, followed by all dependent hypertext docu-
ments represented by one set of related nodes in networks. Each summary con-
tains comparison result of all dependent hypertext documents, generated by the
comparison mechanism. One sample traversal log is illustrated in �gure 4, which
shows that four sets of related nodes were visited during one traversal session,

#IGNORED: IGNTAGS
#Summary report SM_AAAa004XG
 http://www.csdl.tamu.edu/cervantes/eng/cbib/cibo
 http://www.csdl.tamu.edu/cervantes/spa/cbib/cibo
#
#Summary report SM_MAAa004XG
 http://www.csdl.tamu.edu/cervantes/eng/cbib/abc/
 http://www.csdl.tamu.edu/cervantes/spa/cbib/abc/
#
#Summary report SM_SAAa004XG
 http://www.csdl.tamu.edu/cervantes/eng/cbib/collabor.html
 http://www.csdl.tamu.edu/cervantes/spa/cbib/collabor.html
#
#Summary report SM_YAAa004XG
 http://www.csdl.tamu.edu/cervantes/eng/cec.html
 http://www.csdl.tamu.edu/cervantes/spa/cec.html

Fig. 4: Sample of traversal log

the last pair is the document
http://csdl.tamu.edu/cervantes/eng/cec.html and the document
http://csdl.tamu.edu/cervantes/spa/cec.html.Their comparison was stored
in �le: SM YAAa004XG. Further details about the comparison mechanism and
summary report are explained in the next subsection. Regarding �ndings of
non-structural inconsistencies, the traversal mechanism can not handle the task
completely by itself; it must cooperate with the comparison mechanism to detect
non-structural inconsistencies.

4.2 Comparison of Contents of Documents

Whenever one set of related nodes are visited, not only structural inconsisten-
cies will be checked, but the traversal mechanism will also invoke a comparison
mechanism to do a comparison of the contents of related nodes. With one �lter
handling the preprocessing step of removing unimportant contents, the compar-
ison mechanism focuses only on e�ective HTML tags of each node. Since the
number of ignored tags usually is less than the number of tags of interest, spec-
ifying the set of ignored tags will be more convenient. Thus, all HTML tags
intended to be removed are stored in one �le before traversal, and the �lter will
remove these tags from each document. The comparison mechanism takes one
variant as the reference base, then uses the Unix di� utility to �nd out di�erences
between the reference variant and other variant(s). The comparison result of one
set of related nodes is listed in a �le, called the summary report in this work.
One sample of the summary report is illustrated in �gure 5. Since the report is
generated through the di� utility, the contents of the summary report closely
resemble the output format of di�. If any di�erences exist between a reference
variant and other variant(s) at one set of nodes, the corresponding summary
report lists instructions on how to change other variant(s) to the reference vari-
ant. The sample in �gure 5 shows three di�erences between the reference vari-
ant node http://www.csdl.tamu.edu/cervantes/eng/engtitle.htmland an-

 http://www.csdl.tamu.edu/cervantes/eng/engtitle.html
The reference document file:
The ignored tags file: IGNTAGS
This report generated by compNdocs

#
The comparison result between
 http://www.csdl.tamu.edu/cervantes/spa/spatitle.html and Ref. doc:

34c34
<

>

> </i>
> <i>
<
<
44,45c44,45

Fig. 5: Sample of summary report

other variant's related node
http://www.csdl.tamu.edu/cervantes/spa/spatitle.html. Each di�erence
is indicated by locations (line numbers) and the ed editor's commands used to
resolve it. Authors of these hypertext documents are responsible for reviewing
the summary reports to determine if the di�erences need to be resolved or can
be ignored as insigni�cant.

4.3 Keeping Consistent Status Unchanged

A tracking mechanism has been designed to ful�ll requirements of keeping consis-
tent state unchanged. It reads in the log generated by the traversal mechanism.
For each log record, it compares timestamps of dependent hypertext documents
with timestamp of the summary report. Whenever the timestamps indicate an
update is required, the tracking mechanism invokes the comparison mechanism
to re-compare all dependent documents, replacing the old summary report with
the new comparison result. Besides replacing the old summary report, the track-
ing mechanism also generates a list of new summary reports which should be
investigated by authors to con�rm an unchanged consistent state. If any new
update results in inconsistencies, the authors must be responsible for restoring
the consistent state.

5 Experiments and Discussion

We have conducted some experiments using a prototype implementation of the
maintenance tool and the materials of the Cervantes 2001 project. Some incon-
sistencies, both structural and non-structural, were found. They probably would
not be found without the tool because the necessary manual searches and com-
parisons are quite time-consuming and tedious. Since the tool requests all the

contents through network connection to the corresponding HTTP servers, the
process of traversal and comparison took more time than we initially expected.
Including the time for generation of traversal log �le and all summary reports,
about 30 minutes was required to complete one session of traversal and compar-
ison of two variants, each one with about 90 nodes. The comparison time was
dominated by the time need to fetch documents via the network from the HTTP
servers. This time-consuming process can be improved by caching documents in
local site for following sessions' comparison.

In this tool, two di�erent approaches have been used to handle the classi�ca-
tion of structural and non-structural inconsistencies. An occurrence of structural
inconsistency is judged by the traversal mechanism; the reason is that once we
de�ne the structural inconsistency, the traversal mechanism can detect prop-
erties of networks which lead to inconsistencies. However con�rmation of non-
structural consistency must be made by authors. The reason is there are many
factors, some of them are subtle and hard to predict, that can contribute to
di�erences during comparison process. Unless comparison criteria are extremely
loosely de�ned, the comparison mechanism, which compares contents of docu-
ments strictly, will list all di�erences among variants in summary reports. So, we
can not view all di�erences found by comparison mechanism as inconsistencies,
the people who designed and implemented those documents need to get involved
in the con�rmation of inconsistencies, since they have relevant knowledge about
the theme, the design principles, and the HTML syntax. These knowledge are
not easily incorporated into the comparison mechanism. Authors must read all
summary reports to con�rm that discovered di�erences are not inconsistencies;
this takes more time than we expected.

Our prototype implementation adopted the simple rule of terminating when-
ever the traversal mechanism detected a structural inconsistency. Although easy
to implement, this of course required that the tool be rerun to detect any sub-
sequent inconsistencies. A more robust implementation would either be able to
continue from the point of discovery or would be able to checkpoint itself to
reduce the cost of restarting.

6 Conclusion and Future Work

Providing multi-language variants of Web pages based on the same theme is
necessary to reach international viewers. Based on the same theme and design
principle, di�erent variants of one hypertext document use di�erent languages,
but share identical structure and format, besides a few minor exceptions brought
by some variant-unique contents. Deviation from the common structure and/or
format, which is caused by frequent and spontaneous updates, results in confus-
ing situations and dissonance between members of the on-line community since
following the same navigation path but not being able to obtain the same in-
formation in di�erent variants can be very confusing. This work seeks to resolve
the problem of consistently maintainingmulti-variant hypertext documents. The
result is a tool that can traverse, compare multiple variants to �nd out inconsis-

tencies among variants, and detect inconsistencies caused by updates. With aid
of the tool, we did save much time on consistently maintaining our two-variant
Web page, although there is room for improvement, such as the performance of
traversal and comparison mechanism. More intelligent comparison mechanisms
can be designed to enhance the capability of judging inconsistencies, and can
ease the user's burden in con�rming inconsistencies. The readability of sum-
mary report also can be improved by using general instructions instead of the ed
editor commands generated by the di� utility. Finally, the interface of the tool
can be changed to a Web-based one. Thus, users would be able to perform oper-
ations, like adjusting comparison criteria, starting a session of traversal, viewing
traversal log or comparison result, and tracking all via their Web browser. The
tool focuses on the detection of hypertext structural inconsistencies, i.e., the tool
assumes all of the compared documents in di�erent languages are related (with
the same theme and contents) before traversal. However, if the compared doc-
uments are not related and their hypertext structures are relative simple, then
it is possible that the current tool will think these hypertext documents are in
consistent state even though they have di�erent contents. To make the tool more
robust, it is necessary to add one more phase to verify the correct alignment be-
tween documents in di�erent languages before traversal and comparison. We are
exploring the feasibility of applying techniques which used in cross-language text
retrieval [13,14,15] in the veri�cation of multi-lingual documents' alignment.

References

1. Eduardo Urbina, Richard Furuta, et al. Cervantes Project 2001, 1997,
http://www.csdl.tamu.edu/cervantes.

2. Roy T. Fielding. Maintaining Distributed Hypertext Infrastructures: Welcome to
MOMspider's Web. Proceedings of the �rst International Conference on the World
Wide Web(WWW94), Geneva, Switzerland, May 25-27, 1994.

3. Michael L. Mauldin. Lycos, 1994, http://lycos.cs.cmu.edu/.
4. Brian Pinkerton. WebCrawler, 1995, http://webcrawler.com/.
5. Michael Schwartz, Mic Bowman, Peter Danzig, Udi Manber. Harvest, 1994,

http://harvest.transarc.com/.
6. Andreas Ley. HTMLgobble, 1996,

ftp://ftp.rz.uni-karlsruhe.de/pub/net/www/tools/htmlgobble.tar.gz.
7. World Wide Web Consortium. Hypertext Markup Language(HTML), 1997,

http://www.w3.org/pub/WWW/MarkUp/.
8. Antonina Dattolo and Antonio Gisol�. Analytical version control management in

a hypertext system. Proceedings of ACM CIKM 94, Nov.29-Dec.2, 1994, Pages
132-139.

9. Kasper �sterbye. Structural and Cognitive Problems in Providing Version Control
for Hypertext. Proceedings of the ACM conference on Hypertext, Nov.30-Dec.4,
1992, Pages 33-42.

10. Anja Haake. CoVer: A Contextual Version Server for Hypertext Applications. Pro-
ceedings of the ACM conference on Hypertext, Nov.30-Dec.4, 1992, Pages 43-52.

11. Walter F. Tichy. RCS-A System for Version Control. Software - Practice and Ex-
perience (SPE), volume 15, number 7, pp. 637-654, July 1985.

12. John Plaice, William W.Wadge. A New Approach to Version Control. IEEE Trans-
actions on Software Engineering, Vol. 19, No. 3, pp. 268-276, 1993.

13. Landauer, T.K. and Littman, M.L. Fully Automatic Cross-language Document Re-
trieval Using Latent Semantic Indexing. Proceedings of the Sixth Annual Confer-
ence of the UW Centre for the New Oxford English Dictionary and Text Research.
UW Centre for the New OED and Text Research, Waterloo, Ontario, pp. 31-38,
October, 1990.

14. Dumais, S. T., Landauer, T. K. and Littman, M. L. Automatic Cross-linguistic
Information Retrieval Using Latent Semantic Indexing. In SIGIR'96 - Workshop
on Cross-Linguistic Information Retrieval, pp. 16-23, August 1996.

15. Susan T. Dumais, Todd A. Letsche, Michael L. Littman, and Thomas K. Landauer.
Automatic Cross-Language Retrieval Using Latent Semantic Indexing. Proceedings
of the AAAI Spring Symposium on Cross-Language Text and Speech Retrieval.
Stanford University, pp. 18-24, March 1997.

Appendix A

Assume there are two variants of one hypertext document, and the �rst ten
visited nodes in each variant are as shown in �gure 2. Each node is labeled with a
capital letter fromA to J and a variant number. Two nodes labeled with the same
letter are related; i.e., they are counterparts to each other. As �gure 2 shows,
a type 2 structural inconsistency does exist between this two variants because
appear in di�erent order. In variant 1, Node A has three anchors pointing to
three nodes, in sequence of B, C, D, while its counterpart in variant 2 points to
related nodes in sequence of D, C, B. Using the criterion that can correctly detect
the type 1 structural inconsistency can not tell two variants are inconsistent until
the fourth node is visited because

F (A1) = F (A2); F (B1) = F (B2); F (C1) = F (C2); F (D1) = F (D2)

where F (X) is the number of out-bound anchors of Node X. However, when
traversal continues up to the tenth node, the criterion will has better chance to
discover the hidden inconsistency unless following equations hold:

F (E1) = F (H2); F (F1) = F (I2); F (G1) = F (J2);

F (H1) = F (G2); F (I1) = F (E2); F (J1) = F (F2):

the condition will be much more restrictive if there is no type 1 structural in-
consistency between pairs of related nodes, since that means following equations
hold:

F (E1) = F (E2); F (F1) = F (F2); F (G1) = F (G2);

F (H1) = F (H2); F (I1) = F (I2); F (J1) = F (J2):

Combining these two sets of equations, we know that the possibility of passing
over the criterion till the tenth node visited is indeed small since it requires that
each of the nodes, from E to J, have the same out-bound anchors.

	reference: Appeared in "Electronic Publishing, Artistic Imaging, and Digital Typography (7th International Conference on Electronic Publishing, EP'98)", St. Malo, France, March/April 1998, pp. 525-536. Springer Lecture Notes in Computer Science #1375

